
mac admin, occasional photographer

Posts from carlashley.com. Printed on June 14, 2020 using Print My Blog

28 JUNE 2019

CATEGORIES: MAC OS

TAGS: PYTHON

With Python (and other scripting languages) being dropped from deprecated in macOS Catalina*,

and Python 2.7 maintenance ending in 2020, it’s time to start updating any Python 2 scripts so

they are compatible with Python 3.

This might seem like a big task, and it could very well be for your code-base, however there are a

few things you can do to start the process.

If you don’t already have Python 3 installed on your Mac, you’ll need to get it installed.

You can install it using homebrew , or you can install it from the Python Releases for Mac OS X

page. It’s also provided by Apple, but currently you need an Apple Developer account to access

those command line tool betas.

There’s a great guide on what to do and what not to do when installing Python 3 on macOS here.

No matter which way you get it installed, your Python 3 interpreter will be in a new location, and

you’ll de�nitely want to update pip3 for package management.

You can also expect a lot, if not all of the “standard” packages that Apple included with their

Python 2.7 framework to not be installed, so you’ll need to make sure you’ve installed those as

well. This is a great opportunity to start using virtual environments.

For the process of migrating your code, there’s a very handy quick start guide, as well as a lot of

in depth coverage about. There is a process to automatically update Python 2 code to Python 3

compatible code, which is covered here.

Test all the changes made, particularly those made by futurize , to ensure that the scripts

function as expected and that no “undocumented features” are present.

A few things that are important:

CARL ASHLEY

STARTING THE SWITCH TO PYTHON 3

A homebrew installation of Python 3 might install it to di�erent locations as compared to

installing Python 3 from the o�cial packages.

Python 3 won’t necessarily end up in your path, so you’ll either need to add it to your path,

or set up some aliases to relevant binaries.

Using #!/usr/bin/env python as the shebang in your script doesn’t automatically mean a

script will be executed with the Python 3 interpreter.

Python 3 installed by the o�cial Python installer is not code-signed or notarised.

*Correction (2019-06-29): Python 2 is deprecated and will be removed in a future release of

macOS. That could be a future dot release of macOS Catalina, or even later.

29 MARCH 2019

CATEGORIES: PROGRAMMING

TAGS: PANDAS, PYTHON

Recently I’ve needed to wrangle a large data dump from a database system that manages to

mangle exports of data in certain circumstances.

In this particular instance, the data exported out of the database had the ItemID missing from

every ‘record’ after the �rst record exported for each unique itemID (as per the example table

below).

ItemID Date Content

012345 28/03/2019 Hello World.

27/03/2019 The quick brown fox jumps over the lazy dog.

26/03/2019 Lorem ipsum dolor sit amet, consectetur adipiscing elit.

543210 28/01/2018 Danish pastries are deliciously delightful and delicate.

27/01/2018 Excepteur sint occaecat cupidatat non proident.

26/01/2018 A lazy dog lets the quick brown fox jump over him.

Thankfully, this particular issue was fairly easy to �x with some very trivial python coding using

the pandas package.

#!/usr/bin/python

A quick thing to note about this solution, is that it has the
potential to take quite some time on large++ datasets.
import pandas as pd

Create a data frame from the export CSV file.
df = pd.read_csv('export.csv')

Use a 'forward fill' to fill in the gaps for the 'ItemID' column in the
data frame.
df.fillna(method='ffill', inplace=True)

Convert the 'numpy.float64' type to a 'str' type.
This is necessary in this particular instance.
There may be a trailing '.0', so strip this out.
df = df.astype(str).replace('\.0', '', regex=True)

PANDAS

Convert the date into ISO 8601 - the one true date format
df = pd.to_datetime(df, format='%d/%m/%Y')

The date conversion will output the date in an Excel file
as YYYY-mm-dd HH:MM:SS' - aka 2019-03-29 16:32:32
If you only need the date, get rid of the time with this:
df = df.dt.date

Save back out to an Excel file because this was the target file
required.
write_xlsx = pd.ExcelWriter('Report_Sample.xlsx')

By default, pandas Excel output includes the data frame index and
header, this is not necessary in the target Excel document.
df.to_excel(write_xlsx, 'Sample', index=False, header=False)
write_xlsx.save()

The pandas package is one that often comes highly recommended for manipulating data sets by

many python users, and in this simple scenario it is easy to see why this is the case. It certainly is

possible to write something in python that would not have required the installation of a package,

but there are many circumstances where packages like pandas are easier to use to manipulate

data than having to write your own package/module.

1 MARCH 2019

CATEGORIES: MAC OS

TAGS: MAC_OS_X

Armin Briegel’s post on updating the version of bash on macOS to bash 5.0 prompted me to

create a repo for the scripts I use to keep bash and vim updated on my Mac’s. You can �nd them

in this git repo.

Both update scripts require the macOS Command Line Tools installed.

Additionally, there are some basic details about usage in each �le.

I also dislike homebrew , so for other neat little binaries that I tend to use, I’ve found the rudix

package git repo to be pretty handy (check the Ports folder for macOS installer package �les).

The tools I predominantly �nd myself using are:

mtr – ping and traceroute in one neat binary

wget – because sometimes curl is a pain

dos2unix – those damn ^M characters!

rsync – this version includes support for some of the macOS speci�c attributes and what

not

bash-completion – because tab complete can always be better

Not all the rudix packages are compiled for the most recent version of macOS, but in some cases

they’ll still work just �ne.

UPDATING BASH AND VIM

23 NOVEMBER 2018

CATEGORIES: MAC OS

TAGS: BRISBANE APPLE WRANGLERS, DEP, JAMF, MAC, MACADMINS, MACOS, MACOS

10.14, MEETUP

The Brisbane Apple Wranglers met last night, pizza and chilled beverages on hand. There was a

presentation from JAMF (thanks for the sponsorship for the night) about the recent 10.8 release,

and the upcoming 10.9 release, a presentation from Ryan on his organisations Mac on-boarding

process for their students with the JAMF 10.9 beta, and I gave a run down on TCC in Mojave and

the new Privacy Preferences Policy Control Pro�les.

Thanks to @locee for organising the events, looking forward to the next one. If you’re in Brisbane

or South East QLD and want to join, head on over to the Brisbane Apple Wranglers Meetup to

signup.

Slides from my talk on TCC in Mojave are available here.

TCC IN MOJAVE SLIDES FROM BAW MEETUP

3 NOVEMBER 2018

CATEGORIES: MAC OS

TAGS: CODE SIGNING, MACOS, PACKAGING, PRIVACY PREFERENCES

If you’re deploying a script or other �le (text, image, etc) that is code signed, you will need to

make sure the code sign requirements are kept (see here as to why).

If you use pkgbuild , you’ll need to make sure you include the --preserve-xattr argument in the

build options. This argument is undocumented, and may not be supported in older versions of

pkgbuild .

PRESERVING XATTR WITH PKGBUILD

Note, If you use the Packages app to build Mac pkg �les, it doesn’t preserve extended attributes

when it builds a pkg �le, so other work arounds will be required if you’re using that to build your

software packages.

Using outset as an example of building a package with pkgbuild and preserving the extended

attributes, here’s a quick example of modifying the Makefile to include this argument.

In the block below, the repo is cloned, then sed is used to modify the line containing pkgbuild ,

adding the --preserve-xattr argument after the --ownership recommended argument, git diff

is then run to verify the change.

:git # git clone https://github.com/chilcote/outset
Cloning into 'outset'...
remote: Enumerating objects: 515, done.
remote: Total 515 (delta 0), reused 0 (delta 0), pack-reused 515
Receiving objects: 100% (515/515), 273.71 KiB | 479.00 KiB/s, done.
Resolving deltas: 100% (226/226), done.
:git # cd outset/
:outset # sed -i Makefile.backup '/pkgbuild/s/ownership recommended/ownership recommended
--preserve-xattr/g' Makefile
:outset # git diff Makefile
:outset # git diff Makefile
diff --git a/Makefile b/Makefile
index 7decb72..872e583 100644
--- a/Makefile
+++ b/Makefile
@@ -16,7 +16,7 @@ clean:
 ## pkg - Create a package using pkgbuild pkg: clean
- pkgbuild --root pkgroot --scripts scripts --identifier ${PKGID} --version ${PKGVE
RSION} --ownership recommended ./${PKGTITLE}-${PKGVERSION}.component.pkg
+ pkgbuild --root pkgroot --scripts scripts --identifier ${PKGID} --version ${PKGVE
RSION} --ownership recommended --preserve-xattr ./${PKGTITLE}-${PKGVERSION}.component.pkg
 productbuild --identifier ${PKGID}.${PKGVERSION} --package ./${PKGTITLE}-${PKGVER
SION}.component.pkg ./${PKGTITLE}-${PKGVERSION}.pkg
 rm -f ./${PKGTITLE}-${PKGVERSION}.component.pkg
:outset #

Note: this is an example only that’s fairly speci�c to modifying the outset Makefile for

repeatable builds that preserve the extended attributes. If you want to preserve extended

attributes for other �les when your packages are built, you may need to manually modify the

Makefile or adjust your command line pkgbuild arguments to include the --preserve-xattr

command.

Greg Neagle has added this �ag into the munki-pkg utility.

To code sign, an example is provided below.

In this example, the codesign command is used with the relevant certi�cate details. The -i �ag

is used to specify an identi�er for the code sign requirements. This is not a required argument, but

if it isn’t supplied, codesign will use the �lename to determine the identi�er. Lastly, the path to

the object being signed is provided.

The xattr command is used to demonstrate that for plain text �les such as this, the code sign

requirements are actually written out as extended attributes.

The codesign -dr - /path/to/file command outputs the code sign requirements for the �le just

signed.

:outset # codesign -s "Mac Developer: jappleseed@example.org (QED00ABDEC)" -i com.github.
outset pkgroot/usr/local/outset/outset
:outset # xattr pkgroot/usr/local/outset/outset
com.apple.cs.CodeDirectory
com.apple.cs.CodeRequirements
com.apple.cs.CodeRequirements-1
com.apple.cs.CodeSignature
:outset # codesign -dr - pkgroot/usr/local/outset/outset
Executable=/Users/jappleseed/Desktop/git/outset/pkgroot/usr/local/outset/outset
host => identifier "com.apple.pythonw" and anchor apple
designated => identifier "com.github.outset" and anchor apple generic and certificate lea
f = "Mac Developer: jappleseed@example.org (QED00ABDEC)" and certificate 1 /* exists */
:outset #

From here, you can follow your normal build process.

In the case of this outset example it’s simply a matter of running make pkg .

:outset # make pkg
rm -f ./outset*.{dmg,pkg}
rm -f ./pkgroot/usr/local/outset/FoundationPlist/*.pyc
pkgbuild --root pkgroot --scripts scripts --identifier com.github.outset --version "2.0.
6" --ownership recommended --preserve-xattr ./"outset"-"2.0.6".component.pkg
pkgbuild: Inferring bundle components from contents of pkgroot
pkgbuild: Adding top-level postinstall script
pkgbuild: Wrote package to ./outset-2.0.6.component.pkg
productbuild --identifier com.github.outset."2.0.6" --package ./"outset"-"2.0.6".componen
t.pkg ./"outset"-"2.0.6".pkg
productbuild: Wrote product to ./outset-2.0.6.pkg
rm -f ./"outset"-"2.0.6".component.pkg

Note: these Makefile changes will be removed if the outset repo is updated, and this will

preserve all extended attributes for �les in the build process, so you may want to remove speci�c

extended attributes such as com.apple.quarantine attributes.

21 OCTOBER 2018

CATEGORIES: IOS

TAGS: DEVICE_FRAME, FFMPEG, IOS, IPHONE XS MAX, IPHONEOVERLAY.PY, PYTHON

IPHONE OVERLAY ON SCREEN RECORDINGS

This script was inspired by an iOS Shortcut – taking a device frame and overlaying it on an image.

iphoneoverlay.py will take an iOS screen recording (currently only the iPhone XS Max is

supported), and overlay the hardware frame (device frame) onto the recording.

Requirements

Tested on python 2.7.10 on macOS, and with ffmpeg 4.0.2-tessus for macOS

ffmpeg must be installed in /usr/local/bin – available

from https://www.�mpeg.org/download.html

Usage

Clone

:Documents # git clone https://github.com/carlashley/iphone_overlay
:Documents # cd iphone_overlay
:Documents # chmod +x iphoneoverlay.py

View Help

:iphone_overlay # ./iphoneoverlay.py -h
usage: iphoneoverlay.py -i
 --overlay

optional arguments:
 -h, --help show this help message and exit
 -a, --keep-audio Keep audio.
 -i, --input
 Screen recording to add device frame to.
 -o, --output
 Destination video filename.
 -c, --bg-colour "#ffffff"
 Background colour. If specifying RGB code, quote the
 code. For example: "#ffffff"
 --overlay
 Device frame to use as overlay.
 --orientation
 Orientation of final video. Defaults to portrait.
 -d, --debug Debug output.
 -v, --version show program's version number and exit

iOS screen recordings will need to be saved to your Mac in order to create the overlay.

Usage Examples
Required arguments

Both -i, --input and --overlay are required arguments.

Basic run with only input video �le and overlay

Resizing source video to match device frame iPhone-XS-Max-Portrait-Space-Gray.png image s
ize in portrait orientation and applying overlay.
:iphone_overlay # ./iphoneoverlay.py -i ~/Downloads/Portrait.mp4 --overlay iphoneXSmaxRes
izing source video to match device frame iPhone-XS-Max-Portrait-Space-Gray.png image size
in portrait orientation.
frame= 490 fps= 45 q=-1.0 Lsize= 680kB time=00:00:08.11 bitrate= 686.1kbits/s dup=2

 drop=0 speed=0.746x
Video saved to: /Users/jappleseed/Downloads/Portrait_overlay.mp4

Specify input video �le, overlay, and background colour, no

output �lename

:iphone_overlay # ./iphoneoverlay.py -i ~/Downloads/Portrait.mp4 --overlay iphoneXSmax --
bg-colour="#b00d23"
Resizing source video to match device frame iPhone-XS-Max-Portrait-Space-Gray.png image s
ize in portrait orientation and applying overlay.
frame= 490 fps= 45 q=-1.0 Lsize= 693kB time=00:00:08.11 bitrate= 699.2kbits/s dup=2
 drop=0 speed=0.752x
Video saved to: /Users/jappleseed/Downloads/Portrait_overlay.mp4

Specify input video �le, output video �le, background

colour, overlay, and orientation

:iphone_overlay # ./iphoneoverlay.py -i ~/Downloads/Portrait.mp4 -o HelloWorld_Landscape.
mp4 --bg-colour="#ffffff" --overlay iphoneXSmax --orientation landscape
Resizing source video to match device frame iPhone-XS-Max-Portrait-Space-Gray.png image s
ize in landscape orientation and applying overlay.
frame= 490 fps= 55 q=-1.0 Lsize= 703kB time=00:00:08.11 bitrate= 709.5kbits/s dup=2
 drop=0 speed=0.912x
Video saved to: /Users/jappleseed/Documents/git/Portrait_overlay.mp4

Demo

Limitations
Currently only works for video recorded on an iPhone XS Max.

28 SEPTEMBER 2018

CATEGORIES: MAC OS

TAGS: CODE SIGNING, MAC OS, MACOS, MACOS 10.14, MACOS MOJAVE, MDMD, MOJAVE,

PPPCP, PRIVACY PREFERENCES, PROFILES

Now that macOS Mojave has been released into the wild, a quick recap of changes relating to

Transparency, Consent, and Control (TCC).

What changes?

In certain circumstances, the �rst time you run an app, you may be prompted to allow it to access

data such as your contacts, or maybe hardware such as the camera, or possibly even control your

computer.

This doesn’t have to be the �rst time you run an app either. For example, a web browser such as

Google Chrome won’t access your camera or microphone, but at some point it may, and when it

does, that is when you’ll see the prompt.

Additionally, if the user doesn’t acknowledge the consent prompt, by clicking either of the

buttons, and leaves it alone, the consent prompt will eventually disappear after a certain “time

out” period, it will also assume that the user does not want to provide consent.

Worse, a typical schedule runs when the user isn’t even present, and so the prompts go

without response, and the events time out.

Worse still, a timeout (the system defaults to two minutes) doesn’t re-prompt, but

assumes the answer is “no”.

Dave Nanian @ Shirt Pocket

TCC ROUND UP

Can it be disabled?

Unlike System Integrity Protection (SIP), these protections cannot be disabled.

Accessing protected folders from the command line.

You will no longer be able to access certain protected folders in user pro�les that contain

protected information.

To access these folders, or other TCC protected folder locations, you need to add the Terminal (or

whatever your preferred terminal app is) to the Full Disk Access section of the Privacy tab in the

Security & Privacy preference pane, or by using a Privacy Preferences Policy Control Payload

(PPPCP for short).

A list of protected locations collated by a number of macadmins members (check the pinned

items in #tcc for the Google Sheet created by @erik):

" /Users/username/Library/Application Support/CallHistoryTransactions

" /Users/username/Library/Application Support/com.apple.TCC

" /Users/username/Library/Application Support/AddressBook

" /Users/username/Library/Application Support/CallHistoryDB

" /Users/username/Library/IdentityServices

" /Users/username/Library/Calendars

" /Users/username/Library/Preferences/com.apple.AddressBook.plist

" /Users/username/Library/Messages

" /Users/username/Library/Mail

" /Users/username/Library/Safari

" /Users/username/Library/Suggestions

" /Users/username/Library/Containers/com.apple.Safari

" /Users/username/Library/PersonalizationPortrait

" /Users/username/Library/Metadata/CoreSpotlight

" /Users/username/Library/Cookies

" /Users/username/Library/Caches/CloudKit/com.apple.Safari

" /private/var/db/dslocal/nodes/

How do I manage it?

Apple have provided new MDM Con�guration Pro�le payloads.

Pro�les for PPPCP can be built by using my tccpro�le.py tool, Erik Burglund’s Pro�le Creator,

JAMF’s PPPC-Utility, or by artisinally hand crafting them (though you’re likely to drive yourself

mad if you do this).

You will absolutely need an MDM to deploy these pro�les as they cannot be deployed direct to a

machine through a package, or other installation method.

This will mean either a DEP to MDM enrolment work�ow, or through User Approved MDM (users

manually enrol their Mac into MDM).

Apple introduced the concept of User Approved MDM in macOS High Sierra. It’s here to stay, and

we will see more pro�les require this in the future.

Rich Trouton has a git repo with a number of pro�les for various applications, and JAMF has a

pro�le that has been prepared for deployment in JAMF environments to pre-approve their

binaries.

Why can’t I remove items from Microphone, Camera, etc?

Not all items can be removed from the relevant privacy setting.

For example, apps that are allowed or have blocked access to the camera or microphone can

only have their check box ticked or unticked. It’s also not possible to add apps to the Camera or

Microphone preferences directly, and any PPPCP pro�le can only explicitly deny an app access to

the camera or microphone.

You can however reset the TCC database (both the user and system database) by using the

tccutil tool. However, this will require providing Full Folder Access to the Terminal app (or

terminal app of your choice).

Haircut from the macadmins slack has this great gist to reset it with a simple python script, as well

as this great write up on making it a Self Serve item in JAMF.

How will I know what to approve?

You will need to test existing management scripts and the applications/tools that get deployed

to your Mac �eet. Not everything requires approval, but there are apps that will surprise you.

To help understand what you need to approve, you can parse the TCC log stream (just don’t cross

the streams).

Importantly, you can only approve apps or scripts that have been code signed.

It can’t be that simple?

Unfortunately, this is true. It isn’t all that simple.

Over the last few weeks as this has been tested out by members of the macadmins slack (join up

if you haven’t already!), there have been many discoveries about apps that ask for access to

control themselves, or scenarios where the parent process isn’t identi�ed correctly in the TCC

User Consent dialog.

There are also scenarios where if a python script is called from a Launch Daemon or Agent, the

user will be prompted to allow the speci�c script control of the computer or access to protected

data (depending on what is being processed).

PPPCP pro�les should not be installed on a Mac that isn’t running macOS Mojave 10.14 as they

will not be applied after upgrading to macOS Mojave 10.14*. Check your MDM to see how you can

“scope” or “tag” pro�les/devices to avoid deploying PPPCP pro�les to Mac hardware that isn’t

running macOS Mojave, or to Mac hardware that is running macOS Mojave.

*Note: This highlights a need for Apple to implement either a “check in with MDM after upgrade”

routine, or a means by which a Mac system can be told to check in with an MDM.

Should I approve shells or interpreters?

Generally speaking, it’s best to avoid being too general with what is approved in a PPPCP pro�le.

For example, if you approve /usr/bin/python in a PPPCP pro�le to control the Mac, then any

python script that runs code to control your computer will be able to do that.

If at all possible, only whitelist what needs to be approved.

Can I approve scripts?

Yes you can, however you will need to make sure that the script/tool being approved is code

signed, and you will need to create a PPPCP pro�le for that script.

Code signed scripts have the code signing details stored in extended attributes (xattr). When

you deploy the script, these attributes must be preserved when put onto the target Mac.

You will also need a code signing certi�cate in order to code sign scripts, software, etc. Apple

provides more information about code signing here.

Can I code sign third party apps that aren’t code signed?

Technically yes, however it is strongly recommended that if at all possible, rely on the developer

to code sign the app.

Code signing is a way of indicating the app has not been changed since it was signed, identify

where the app came from or who signed it, and if the app is trustworthy.

By code signing an app that you have not created or are the developer of, you e�ectively take

responsibility for making sure it does not act maliciously, etc.

Should I create a single pro�le, or multiple pro�les?

It’s ultimately a decision to make based on the environment that these are deployed in.

The granularity of multiple pro�les is a good thing, but you do have to be mindful of how pro�les

are applied on a macOS system. If there are con�icting payloads of the same type, then the most

restrictive payload wins.

Creating a large pro�le with multiple payloads in it will minimise the chance of having con�icting

payloads in multiple pro�les, however it will be more cumbersome to make changes to speci�c

payloads, especially when the pro�le applies to multiple machines that may have di�erent needs.

PPPCP pro�les have been deployed, but nothing shows up in the Security
& Privacy preferences pane.

This seems to be by design (presently), but does not help the user or administrator know if a

pro�le is in place or deployed correctly.

The only time an app will show up in the Security & Privacy preference pane, is when it has been

approved directly by the user.

If this is something that you believe should be changed, then submit feedback/RADARs to Apple.

An app that used to work �ne in macOS High Sierra, no longer works, and
randomly crashes.

This may be because the app hasn’t been compiled/built properly for macOS Mojave 10.14.

This blog post goes into more detail about this issue.

What can I do to avoid triggering a TCC User Consent dialog?

For third party apps that are out of your control, the only course you can take is to send feedback

to the app developer. In some cases, they will be able to re-write code to avoid code that will

trigger these consent dialogs, but in some cases that won’t be possible.

If you are writing your own scripts for managing macOS, or just to make your life easier, then you

may need to re-write your scripts to avoid things that will trigger a consent dialog. You will need

to test your scripts to �nd out if it will trigger a consent dialog.

This is still all confusing.

The macadmins slack is a fantastic resource for Mac admins, especially for those that are one

man shops. Join the #tcc channel and join in the discussions there.

Feedback.

The best way that we can a�ect change is by submitting feedback to Apple through either the

Apple Seed program or the Developer program.

If you’re not in the Apple Seed program, then reach out to your Apple SE and ask for an invite to

join in.

Provide thorough details of the issue, steps to replicate, screenshots, videos, etc, and include

impact statements that describe what the impact is to IT sta�, end users, as well as the number of

devices this applies to.

Joining the Developer program is also a good idea if you can’t join the Apple Seed program.

23 SEPTEMBER 2018

CATEGORIES: MAC OS

TAGS: MAC OS, MACOS, MACOS 10.14, PRIVACY PREFERENCES, PROFILES, TCC

One of the issues with creating a Privacy Preferences Policy Control Payload (PPPCP) pro�les is

working out whether you will whitelist an entire shell or interpreter (for example, /bin/bash or

/usr/bin/python) or go down the route of code signing scripts that trigger a TCC User Consent

dialog.

On the face of it, whitelisting an entire shell or interpreter seems like the easiest way to handle

this situation, especially if you deploy a tool like outset . However, there is the possibility that

some malicious app might drop a LaunchDaemon or LaunchAgent onto a macOS system that

executes a shell script, and suddenly, you’ve got a script that is essentially allowed to execute any

action that might ordinarily have prompted a consent dialog.

The alternative is to be diligent with what gets whitelisted, and rather than whitelisting

/usr/bin/python (as an example), you may choose to code sign your scripts and generate PPPCP

pro�les to whitelist those scripts. This would allow you to be somewhat more granular in what is

pre-approved for running on a system without generating consent dialogs.

However.

Code signing a script does not work in the same way that code signing an app bundle does.

When an app bundle is code signed, the details/requirements are put in a folder called

_CodeSignature .

When a plain text �le is code signed, the signature ends up in an extended attribute, speci�cally

four di�erent attributes.

:outset # codesign -s "Mac Developer: foo@example.org (ABC01FFFGH)" -i com.github.outset
outset
:outset # ls -lha
total 8
drwxr-xr-x 4 carl staff 128B 23 Sep 12:53 .
drwxr-xr-x 4 carl staff 128B 23 Sep 12:30 ..
drwxr-xr-x 4 carl staff 128B 23 Sep 12:09 FoundationPlist
-rwxr-xr-x@ 1 carl staff 1.0K 23 Sep 12:20 outset
:outset # xattr outset
com.apple.cs.CodeDirectory
com.apple.cs.CodeRequirements
com.apple.cs.CodeRequirements-1
com.apple.cs.CodeSignature

CODE SIGNING SCRIPTS FOR PPPC WHITELISTING

:outset # codesign -dr - outset
Executable=/Users/carl/Desktop/git/outset/pkgroot/usr/local/outset/outset
designated => identifier "com.github.outset" and anchor apple generic and certificate lea
f = "Mac Developer: foo@example.org (ABC01FFFGH)" and certificate 1 /* exists */

This presents no problem as long as the code signed �le stays where it is, or is moved around by

tools that keep the extended attributes attached to the �le (such as mv , cp , or rsync with

appropriate �ags, or even certain compressed �le formats).

It is a problem if you need to build a package to deploy the �le to another machine.

So far in testing, I’ve found that any package built with Packages, or pkgbuild / productbuild , the

extended attributes for �les are stripped when the package is built, and it seems there are no

command line arguments for pkgbuild / productbuild to keep the extended attributes (update:

this is not strictly true, see the update below). The Packages app also strips extended attributes

when building a package (including when a �le is embedded as a resource for the installer).

Work around

Update: Greg Neagle replied to a tweet about the issue of the extended attributes missing after

building a package. If you use pkgbuild , simply add the --preserve-xattr �ag to the pkgbuild

command to preserve the extended attributes.

This is an undocumented �ag/feature, so older versions of pkgbuild may not support it. This was

tested on macOS Mojave 10.14, with Xcode 10 installed.

Once I know how to do the same thing with Packages, I’ll be sure to update, other wise, the work

around below will work in a pinch.

To get around this, there are several compressed �le formats that preserve the extended

attributes of a �le, one of which is the handy tar.gz �le type.

In this example, the outset git repo has been cloned and changes are being made to the �les

within that directory. This also presumes you are familiar with the Packages application and

building a package with it.

:~ # cd ~/Desktop/git
:git # git clone https://github.com/chilcote/outset
Cloning into 'outset'…
remote: Enumerating objects: 16, done.
remote: Counting objects: 100% (16/16), done.
remote: Compressing objects: 100% (14/14), done.
remote: Total 531 (delta 4), reused 8 (delta 0), pack-reused 515

Receiving objects: 100% (531/531), 281.03 KiB | 456.00 KiB/s, done.
Resolving deltas: 100% (230/230), done.

Code sign the /usr/local/outset/outset script:

:outset # codesign -s "Mac Developer: foo@example.org (ABC01FFFGH)" -i com.github.outset
outset

If you want to verify the codesign result:

:outset # codesign -dr - outset
Executable=/Users/carl/Desktop/git/outset/pkgroot/usr/local/outset/outset
designated => identifier "com.github.outset" and anchor apple generic and certificate lea
f = "Mac Developer: foo@example.org (ABC01FFFGH)" and certificate 1 /* exists */

Next, a tarball needs to be created containing just the script that has been code signed:

:outset # pwd
/Users/carl/Desktop/git/outset
:outset # cd pkgroot/usr/local/outset/
:outset # tar -cvf outset.tar.gz outset
a outset
:outset # ls -l
total 32
drwxr-xr-x 4 carl staff 128 23 Sep 12:09 FoundationPlist
-rwxr-xr-x@ 1 carl staff 1024 23 Sep 12:20 outset
-rw-r--r-- 1 carl staff 8704 23 Sep 13:49 outset.tar.gz

From here, include the outset.tar.gz �le as a resource in a Packages project that replicates the

outset installer, and modify the postinstall script that is used by the normal outset package

to look like this:

#!/bin/bash

#reference: https://github.com/google/macops/blob/master/keychainminder/Package/postinsta
ll

resources=$(dirname $0)
target_vol=$3
package_bundle_id=$INSTALL_PKG_SESSION_ID

] && exit 0

/bin/launchctl load /Library/LaunchDaemons/com.github.outset.boot.plist
/bin/launchctl load /Library/LaunchDaemons/com.github.outset.cleanup.plist
/bin/launchctl load /Library/LaunchDaemons/com.github.outset.login-privileged.plist

user=$(/usr/bin/stat -f '%u' /dev/console)
] && exit 0
/bin/launchctl asuser ${user} /bin/launchctl load /Library/LaunchAgents/com.github.outse
t.login.plist
/bin/launchctl asuser ${user} /bin/launchctl load /Library/LaunchAgents/com.github.outse
t.on-demand.plist

/usr/bin/tar -xpf ${resources}/outset.tar.gz -C /usr/local/outset/
/usr/sbin/chown root:wheel /usr/local/outset/outset

exit 0

The additional lines in the script are (... denotes code from the original script):

...
resources=$(dirname $0)
target_vol=$3
package_bundle_id=$INSTALL_PKG_SESSION_ID
...
/usr/bin/tar -xpf ${resources}/outset.tar.gz -C /usr/local/outset/
/usr/sbin/chown root:wheel /usr/local/outset/outset
...

Make sure the postinstall script is included in the Packages �le, build and test. If all has gone

correctly, running codesign -dr - /usr/local/outset/outset should result in the code sign

details returned to stdout and you should be able to create a PPPCP pro�le with the code sign

details of that script.

Note

Currently, the tccpro�le.py script doesn’t used the code sign requirements of a script that has

been code signed. This capability is coming soon.

Update: tccprofile.py now supports scripts that have been code signed.

Reference

Details about how code signing works for text �les was found here – Preserving Extended

Attributes on OS X.

6 SEPTEMBER 2018

CATEGORIES: MAC OS

TAGS: LOGGING, LOGS, MACOS, MOJAVE, PRIVACY PREFERENCES, TCC, USER CONSENT

Logging user consent events in macOS Mojave to understand what is happening when a process

requests access to control another app, or access to data can be done by using a one line log

command (credit to @bp on the macadmins Slack for the command, and the idea to use the

phrase user consent in relation to these changes).

Run this command, and then execute the script, or launch the app that you need to test.

log stream --debug --predicate 'subsystem == "com.apple.TCC" AND eventMessage BEGINSWITH
"AttributionChain"'

Example using osascript

Example log output using osascript -e 'tell app "System Events" to display dialog "Hello

World"' to trigger a dialog.

:Desktop # log stream --debug --predicate 'subsystem == "com.apple.TCC" AND eventMessage
BEGINSWITH "AttributionChain"'
Filtering the log data using "subsystem == "com.apple.TCC" AND composedMessage BEGINSWITH
"AttributionChain""
Timestamp Thread Type Activity PID TTL
2018-09-05 11:33:16.474912+1000 0x6c79 Info 0x763b 234 0 t
ccd: AttributionChain: ACC:{ID: com.apple.systemevents, PID, auid: 501, euid: 501, binar
y path: '/System/Library/CoreServices/System Events.app/Contents/MacOS/System Events'}, R
EQ:{ID: com.apple.WindowServer, PID, auid: 88, euid: 88, binary path: '/System/Library/Pr
ivateFrameworks/SkyLight.framework/Versions/A/Resources/WindowServer'}
2018-09-05 11:33:16.481370+1000 0x6c79 Info 0x763c 234 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/

READING TCC LOGS IN MACOS

Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.Win
dowServer, PID, auid: 88, euid: 88, binary path: '/System/Library/PrivateFrameworks/SkyLi
ght.framework/Versions/A/Resources/WindowServer'}
2018-09-05 11:33:16.493752+1000 0x6bf6 Info 0x0 234 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/
Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.app
leeventsd, PID, auid: 55, euid: 55, binary path: '/System/Library/CoreServices/appleevent
sd'}
2018-09-05 11:33:16.494363+1000 0x6bf6 Info 0x0 234 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/
Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.app
leeventsd, PID, auid: 55, euid: 55, binary path: '/System/Library/CoreServices/appleevent
sd'}

Breaking it down

In the log output above, there are several signi�cant keywords to help identify what is going on

when the prompt is triggered.

Keyword De�nition Description

ACC Access/Accessing
Details the application or script that is attempting to

access or control macOS that requires user consent.

RESP Responsible

The application or script that is responsible for the

application or script that is attempting to access or

control macOS.

REQ Request/Requesting Action that is being requested.

ID Identi�er The identi�er of the application or script.

PID Process ID The process identi�er.

AUID Actual User ID The real user identi�er.

EUID E�ective User ID
The e�ective user identi�er. This will be di�erent to

the AUID if a script has been run as a di�erent user.

binary path Path of binary The full path to the binary or script.

In this example, what appears to be happening when the osascript is being executed, is that

System Events is requesting access to Window Server in order to display a dialog. If there is no

existing Privacy Preference to allow this to happen, a user consent dialog is presented to the user.

User consent dialog presented after an osascript command has been executed from Terminal .

Stepping through the logs, the �rst entry accounts for the System Event requesting access to

Window Server .

2018-09-05 11:33:16.474912+1000 0x6c79 Info 0x763b 234 0 t
ccd: AttributionChain: ACC:{ID: com.apple.systemevents, PID, auid: 501, euid: 501, binar
y path: '/System/Library/CoreServices/System Events.app/Contents/MacOS/System Events'}, R
EQ:{ID: com.apple.WindowServer, PID, auid: 88, euid: 88, binary path: '/System/Library/Pr
ivateFrameworks/SkyLight.framework/Versions/A/Resources/WindowServer'}

The next entry details the application or script that is relevant to what needs to be whitelisted.

2018-09-05 11:33:16.481370+1000 0x6c79 Info 0x763c 234 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/
Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.Win
dowServer, PID, auid: 88, euid: 88, binary path: '/System/Library/PrivateFrameworks/SkyLi
ght.framework/Versions/A/Resources/WindowServer'}

In this log entry, the responsible application is the Terminal app. The path is captured in the

binary path . The application/binary/script accessing is osascript , again, the path to which is

captured in binary path , and lastly, the request is going to Window Server , the path,

unsurprisingly, is found in the binary path .

The Window Server log entries are not of key importance in this particular scenario, rather, the

�rst log entry where we see System Events attempting to access Window Server is important,

coupled with the details in the subsequent entries relating to the Terminal application.

Note: In the case of scripts that are not code signed, and are being launched/run by a Launch

Agent/Daemon, the script itself cannot be whitelisted, the path of the shell or interpreter must be

used instead. My previous post covers this in a little more detail.

Applying log info to a pro�le payload

In practice, the user consent dialog should be enough to provide insight as to what applications

need to be used in creating an AppleEvents Privacy Preferences Policy Control Payload in a

pro�le or other PPPCP payload types, but using a log stream may be required.

To create an AppleEvents pro�le using tccpro�le.py, the following would be used:

./tccprofile.py --appleevents /Applications/Utilities/Terminal.app,/System/Library/CoreSe
rvices/System\ Events.app --allow --payload-description="Whitelist Terminal to allow Appl
eEvents sent from commands run in Terminal" --payload-identifier="com.github.carlashley"
--payload-name="Terminal App AppleEvents Whitelist" --payload-org="My Great Company" --pa
yload-version=1 -o Terminal_AppleEvents.mobileconfig

Post user consent approval

Here’s the log event relating to the user approving control/access. Timestamps are di�erent as

this was captured in later tests.

2018-09-06 12:09:45.749330+1000 0x6002 Info 0x8392 245 0 t
ccd: AttributionChain: ACC:{ID: com.apple.fseventsd, PID, auid: 501, euid: 501, binary p
ath: '/System/Library/Frameworks/CoreServices.framework/Versions/A/Frameworks/FSEvents.fr
amework/Versions/A/Support/fseventsd'}, REQ:{ID: com.apple.sandboxd, PID, auid: 0, euid:
0, binary path: '/usr/libexec/sandboxd'}

Here’s the log event relating to the osascript being executed after consent is approved.

2018-09-06 12:10:36.165892+1000 0x63d4 Info 0x810e 245 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/
Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.Win
dowServer, PID, auid: 88, euid: 88, binary path: '/System/Library/PrivateFrameworks/SkyLi
ght.framework/Versions/A/Resources/WindowServer'}
2018-09-06 12:10:36.179368+1000 0x6230 Info 0x0 245 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/
Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.app
leeventsd, PID, auid: 55, euid: 55, binary path: '/System/Library/CoreServices/appleevent
sd'}

2018-09-06 12:10:36.179915+1000 0x6230 Info 0x0 245 0 t
ccd: AttributionChain: RESP:{ID: com.apple.Terminal, PID, auid: 501, euid: 501, responsi
ble path: '/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal', binary path: '/
Applications/Utilities/Terminal.app/Contents/MacOS/Terminal'}, ACC:{ID: com.apple.osascri
pt, PID, auid: 501, euid: 501, binary path: '/usr/bin/osascript'}, REQ:{ID: com.apple.app
leeventsd, PID, auid: 55, euid: 55, binary path: '/System/Library/CoreServices/appleevent
sd'}
2018-09-06 12:10:36.200470+1000 0x63c6 Info 0x85b2 294 0 t
ccd: AttributionChain: ACC:{ID: com.apple.systemevents, PID, auid: 501, euid: 501, binar
y path: '/System/Library/CoreServices/System Events.app/Contents/MacOS/System Events'}, R
EQ:{ID: com.apple.systemevents, PID, auid: 501, euid: 501, binary path: '/System/Library/
CoreServices/System Events.app/Contents/MacOS/System Events'}

Errors/Corrections

Given this is based on observations of the log stream , and not any o�cial documentation, any

corrections to errors, etc, can be directed to @carl on the macadmins slack.

Details are current as at time of posting.

1 SEPTEMBER 2018

CATEGORIES: MAC OS

TAGS: LAUNCHAGENTS, LAUNCHD, LAUNCHDAEMONS, MOJAVE, PRIVACY PREFERENCES,

TCC

With the release of macOS Mojave imminent, and a new Privacy Preferences Policy Control

Payload, it is important to properly launch scripts from LaunchAgents or LaunchDaemons to ensure

the correct process is identi�ed when the script runs, so that macOS uses the correct codesign

requirements; this is especially true for python scripts as there are di�erent requirements

depending on how the python script is run from the LaunchAgent or LaunchDaemon .

If a LaunchAgent or LaunchDaemon does not explicitly use /usr/bin/python to execute the script, it

uses the codesign details

of /System/Library/Frameworks/Python.framework/Resources/Python.app .

PRIVACY PREFERENCES POLICY CONTROL

2018-09-28 Update:

In the �nal release of mac OS Mojave 10.14, the TCC logs indicate that the System

Framework python is being used, but depending on how the python script is executed

from a LaunchDaemon or LaunchAgent , the codesign details will vary.

This presents an issue as the codesign details for /usr/bin/python are di�erent to those of

/System/Library/Frameworks/Python.framework/Resources/Python.app .

:Desktop # codesign -dr - /usr/bin/python
Executable=/usr/bin/python
designated => identifier "com.apple.python" and anchor apple

:Desktop # codesign -dr - /System/Library/Frameworks/Python.framework/Resources/Python.ap
p
Executable=/System/Library/Frameworks/Python.framework/Versions/2.7/Resources/Python.app/
Contents/MacOS/Python
designated => identifier "org.python.python" and anchor apple

An example of a LaunchAgent that will not work (as at time of writing), is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.example.pythonScript</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Users/testuser/Desktop/executeshell.py</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

When this is launched by launchd , any privacy alerts triggered by the script will show

executeshell.py as the parent process*. It appears that in this example, macOS uses the

codesign details of /System/Library/Frameworks/Python.framework/Resources/Python.app

executeshell.py privacy alert

To correctly launch this script so that any privacy pro�les work, the ProgramArguments array must

include the path to the python interpreter.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.example.pythonScript</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/bin/python</string>
 <string>/Users/testuser/Desktop/executeshell.py</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

With the adjusted �le, the script will have the correct parent process if it triggers any privacy

alerts. It appears in this case that the codesign details of /usr/bin/python are used, which is

what the privacy management system is expecting.

This is important, because the shebang in a script does not always appear to be evaluated

correctly when launchd launches the script.

python privacy alert

*A note about parent processes in relation to whitelisting:

This article only discusses behaviour observed in testing pro�les to whitelist apps/scripts.

Based on testing, to successfully whitelist scripts that interact with �les/folders that are protected

by the new privacy protections in macOS Mojave, or automation events that try to control macOS,

the item being whitelisted must be the parent process.

For example, if you open up Terminal.app and run the below osascript , you will be prompted

to allow Terminal to control System Events.

osascript -e 'tell app "System Events" to display dialog "Hello World"'

Terminal controlling System Events

In this example, the parent process is the Terminal application, so to allow Terminal to control

System Events, you would need to create a pro�le with an AppleEvents Privacy Preferences

Policy Control Payload that whitelists the Terminal application.

Other examples include using outset to manage the execution of scripts, pro�le installs, etc

during login or boot time. In this instance, python is the parent process of any scripts/pro�le

installs that occur, so /usr/bin/python would need to be whitelisted in appropriate Privacy

Preferences Policy Control Payloads in order for outset to be run any scripts without triggering

privacy alerts.

17 AUGUST 2018

CATEGORIES: MAC OS

TAGS: MAC OS, MAC_OS_X, MACOS, MDM, PRIVACY PREFERENCES, TCC

https://github.com/carlashley/tccpro�le

Quickly builds Accessibility pro�les for macOS applications based on new Pro�le payloads for

Privacy Preferences Policy Control Payload as outlined in Apple’s Con�guration Pro�le Reference

documentation.

The utility can also sign a generated pro�le.

TCCPROFILE

ro�le run

5 AUGUST 2018

CATEGORIES: MAC OS

TAGS: COMMAND LINE TOOLS, XCODE

The xcode_tools script I wrote a while back has been updated to better handle newer releases of

Xcode.

The new version can process most recent macOS releases (only tested 10.9+) to �nd the most

recent Command Line Tools and SDK release for that version of macOS, as well as install found

packages.

It requires python 2.7.10 and be run on a macOS release newer than 10.9.

To see available arguments, clone the repo and run ./xcodetools.py --help . By default, running

./xcodetools.py will download the latest version of the Command Line Tools and SDK (if

available) to /tmp/xcode .

UPDATE TO XCODETOOLS.PY

6 JULY 2018

CATEGORIES: MAC OS

TAGS: AES, CIPHER TEXT, ENCRYPTING, MAC OS, MAC OS X, OBFUSCATE, PLAIN TEXT,

PYTHON, SCRIPTS

A little while ago I covered a technique that could be used to obfuscate sensitive text in scripts

used to manage macOS; a recent issue with this particular technique left me needing to re-write

this in python .

What you’ll need:

python 2.7.10 minimum

pycrypto

Installing pycrypto using pip requires Xcode tools to be installed, which for some environments

is not possible or desired, so you will need to work out a means of getting the pycrypto module

onto target machines. In my instance, I used logGen to take a snapshot pre/post installation and

built a package for distributing to clients.

To create a key for encrypting/decrypting, a �le is created containing 32bytes of random data. An

example of how this is generated is some simple python code:

#!/usr/bin/python

import os
import sys

Create a random 32 byte keyfile for use with aescrypto.py

def createKey(output_file):

REVISITING OBFUSCATING TEXT IN SCRIPTS

 with open(output_file, 'wb') as output:
 output.write(os.urandom(32))

if len(sys.argv) is 2:
 createKey(sys.argv)
else:
 print 'Usage: {} '.format(sys.argv)
 sys.exit(1)

Next comes creating the encrypted text; turning that wonderful coder/scripter resource, Stack

Over�ow, in particular a discussion on how to encrypt text using AES256. Code has been

borrowed heavily from this comment in particular, I have a deep appreciation for people willing to

share their knowledge with others.

A sample script available here covers how this can be used to encrypt/decrypt plain text. This �le

outputs the encrypted text into a plist �le simply because in my use case I want the data in a

machine readable format. Any other output method can be used.

Fundamentally, the key is read in, and a random initialisation vector is generated when the

encryptText() function is called, this ensures that each time a string is encrypted, it doesn’t

result in the same cipher text. It does mean that the initialisation vector needs to be supplied with

the cipher text in order to decrypt it.

The decryptText() reads the same key as used to encrypt, and the correct initialisation vector,

then passes the cipher text back through the aes.decrypt() method to get the plain text.

I don’t claim to know the complex ins and outs of which encryption methods work the best, so I

don’t plan on using this technique for mission critical/sensitive data, this is simply a means to

ensuring simple text strings that don’t need to be trivially accessible are obfuscated from prying

eyes, especially where it is fairly trivial to expand a package �le out, or trawl through web

directories that aren’t appropriately con�gured.

As this isn’t true asymmetric encryption (using a private/public key pair), using this technique

does have some risks.

The key in this technique is the same key for encrypting and decrypting, so extra care

needs to be taken to ensure it isn’t easily accessible

If storing the key on a target machine, store it in an area of the �le system that only

privileged users have access to, etc.

If deploying the key in a package, limit access to the location the package is stored to

ensure only authorised devices/users can access it

It’s also advisable to assess whether this technique is appropriate for your needs and the scenario

in which plain text must be obfuscated, and potentially any legislation governing how certain data

must be protect. My particular use case doesn’t involve sensitive scenarios, and is su�cient

enough to make it more complicated for any naughty little prying eyes to see what is going on.

25 JUNE 2018

CATEGORIES: MAC OS

TAGS: CREATEIOSWALLPAPER.PY, DEVICE MANAGEMENT, IOS, IPAD, MDM, WALLPAPER

A recent need for managing iPads within my workplace is creating a custom wallpaper for each

device that includes a picture of the person the device is assigned to, as well as their name and a

QR code for the asset details, plus the organisation logo. Given the large number of these

devices, creating wallpapers by hand is out of the question.

Python to the rescue.

What you’ll need:

python 2.7.10 (minimum)

pillow (pip install pillow)

qrcode (pip install qrcode)

Both pillow and qrcode may have additional dependancies to install.

I’ve uploaded a sample bit of code to https://github.com/carlashley/createiOSWallpaper/

The code will build a wallpaper image based on the speci�ed target device (check the

resolutions dictionary for supported devices, can easily be extended to include iPhones), and

CREATEIOSWALLPAPER.PY

will also check if the picture of the user being inserted into the wallpaper exceeds the wallpapers

width/height and resize it down.

The QR code is dynamically generated and dropped into the image, in a centre alignment, o�set

from the corporate logo. The user’s name is dropped onto the bottom of the image with some

vertical padding and a horizontal centre alignment.

The user’s name text is single line, but could be made into a multiline text string, you would need

to take into account the new height of the multiline text however, or use another method to wrap

the multiline text and re-calculate the line heights.

This could be used in conjunction with your MDM to create a wallpaper for each iOS device

managed by the MDM (if your MDM supports setting the device background via API).

Here’s a simple video of the tool in action. In this sample, a wallpaper is created for each of the

di�erent iPad hardware versions (note, a number of iPad hardware models have the same

resolution).

createiOSWallpaper.py in action

18 OCTOBER 2017

CATEGORIES: MAC OS

TAGS: GARAGEBAND, LOGIC PRO X, MAC OS, MACOS, MAINSTAGE 3, MUNKI

A few months ago while planning for future macOS upgrades, I realised that the existing

methodologies for managing the audio content for GarageBand (and other Apple audio apps) in

munki and autopkg were not very well equipped to handle the frequent changes Apple make to

the additional content for these apps.

While downloading and importing content for one version of GarageBand would work, this would

only be valid for a speci�c release of GarageBand/Logic Pro X/MainStage, and any time those

additional packages were changed by Apple, it would mean revisiting what audio content was

imported into munki; while it is possible to simply keep importing packages into munki, and

simply mark them as updates for X version of GarageBand, this wasn’t a strategy that I felt was

viable for long term deployments. Rather, I needed a solution that met the following criteria:

Could be used as a post_install script for munki.

REVISITING APPLELOOPS.PY AND MANAGING ADDITIONAL
AUDIO CONTENT

Could be run as a script for other deployment tools, or used on its own.

Required minimal e�ort to maintain.

Could be used to mirror content locally.

So I decided to re-visit the appleLoops.py tool I had written and turn it into a means of managing

the deployment of additional content for these Apple audio apps.

Below is the general outline of how the new appleLoops.py re-write can be used in munki. This

assumes a familiarity with munki and related deployment techniques/tools; some minor

programming experience in python is handy, but not essential.

The basic process that occurs with any of the three apps is that the �rst run will trigger a

download of mandatory content, once this is installed, the user is given the option of

downloading additional content that isn’t essential to the app, but nice to have.

A more in depth explanation of what happens the �rst time these audio apps launch is available

on this Wiki page.

With this information covered, here is my deployment process for munki; note, this process can

be adapted to use for deploying the additional content for Logic Pro X and MainStage 3.

1. Import a GarageBand/Logic Pro X/MainStage 3 app into munki. Typically I use an autopkg

recipe that also handles modifying the _MASReceipt/receipt �le so the app is not

associated with a speci�c Apple ID.

2. Use appleLoops.py to download a mirror copy of the additional content for the speci�c

versions being deployed, and place this mirror copy on the munki_repo web server.

This can potentially be automated to keep the additional content up to date without

continuing to manually update the mirror.

3. Add the appleLoops.py script as a post_install script to the imported app; I �nd using

munkiadmin the easiest way to modify munki’s pkginfo �les.

4. Modify a small snippet of code at the end of the �le.

Change:

if __name__ == '__main__':
 main()

To:

if __name__ == '__main__':
 al = AppleLoops(allow_insecure=True, deployment_mode=True, pkg_server='http://m
unkiserver/munki_repo/pkgs/apple_audio/', dry_run=False, log_path='/var/log', manda
tory_loops=True, optional_loops=True)
 al.main_processor()

The bene�t of this is that it is simple to make a change to the post_install script in the

relevant munki pkginfo without having to install the script on each client, then maintain it

on each client.

The arguments that are used in the example above are applicable to my environment as

there is a local mirror of the additional content that is maintained; you would need to adjust

to suit your environment.

While the whole script could be shrunk down to do just the essential parts of deploying the audio

content and inserted into deployment tools as either post_install scripts, or other work�ow

processes in (for example, in JAMF), there are many other features that this updated release

includes:

Downloading a mirror of the Apple audio content for local hosting.

Skips existing downloaded packages to reduce bandwidth usage.

Can be run as a scheduled job (either through cron or launchd or other scheduling

systems) on the local mirror to download new content.

Utilise a Caching Server on the network to dynamically cache loops for deployments.

Create DMG’s of downloaded content.

Download content for speci�c releases of Apple’s audio apps.

Dry run deployment mode to determine what would be installed or upgraded.

Set a free space threshold to avoid �lling up local storage when in deployment mode.

Silent output during deployment mode.

Re-install all previously installed loops.

There are some things to be aware of that currently are limitations or:

Each time the script is run in deployment mode, it will look for any of the three apps

installed; if one or more is found, it will deploy the content for all the apps found. This

means if you’re deploying GarageBand and Logic Pro X together, the �rst time the script is

run, it will deploy the loops for both GarageBand and Logic Pro X; the second time it is run,

it will skip any packages already installed.

Currently there is no means of providing progress of a post_install script to munki, so any

progress UI elements in user facing components of munki will only show that scripts are

being run, which for an end user could look as though the progress of the installation has

stalled. If you deploy these audio apps as a “self service” deployment with munki, you may

wish to take advantage of preinstall_alert to alert users.

Further information can be found on the appleLoops.py wiki.

The latest release is available here.

Support can be found by joining the #musicsupport room in the macadmins Slack.

9 OCTOBER 2017

CATEGORIES: MAC OS

TAGS: MACOS, OBFUSCATE, OPENSSL, SCRIPT, SHELL, SSH-KEYGEN

For many years I’ve been using a simple method of obfuscating sensitive information in shell

scripts. I can’t take the credit for this, as it was something inherited in my work environment.

This technique uses openssl to encrypt and decrypt a string of text without having to embed the

sensitive data in plain text. Note, this isn’t proper private/public key-pair encryption, so treat this

as simply obfuscating text.

First step in the process is to generate what can be referred to as a key �le. The key �le must

contain a random string. The easiest way I �nd to do this is to use ssh-keygen and copy a large

chunk of text either from the private key, or the public key, and save it in a �le.

For example, key.txt contains the following:

AAAAB3NzaC1yc2EAAAADAQABAAABAQCpppktHMeS0D2wgxd0NdGAeNHIqcPNUoQ7LdYZLkDA4Y6Mq25wrkVh4ihek
NhwiEyz+cdmhkpF4oMXu8ccg1vxRASBqq2GIJuwHMpkFVKmbxCq6+G5uQz8shvOLE5Egy6rWgltNkUSJpCJ9LJO2t
I8Jvlyr34lrJvYTitI9E+4bGGXcmSXrG236RJKto6g4bV+IYszjAM6EHaIJwzILplhRApAETq23hEE9TVOw1POa6D
bGhCSz+jwh2ZCSiod7yTeZy9DtPJ5rNm8FLJMH65wt48rRqgfy4UuUy8NYw79LS4S8XJ3PiklBhpkPApTWrGRCa91
D1PownCjTMiz1c5r

The shell script below is an example of this obfuscation/de-obfuscation in process.

#!/bin/sh
password="test"
secret="cat /var/root/key.txt"
generated_secret=$(echo ${password} | openssl enc -aes-256-cbc -pass "pass:${secret}" -a
-e)
cleartext_secret=$(echo ${generated_secret} | openssl enc -aes-256-cbc -pass "pass:${secr
et}" -a -d)
echo "Obfuscated password: ${generated_secret}"
echo "De-obfuscated password: ${cleartext_secret}"

When this is run:

: # sudo ./foo
Obfuscated password: U2FsdGVkX18FWNJ0K3nFa0QPyb9YksGxavWE0p4Km7g=
De-obfuscated password: test

OBFUSCATING SENSITIVE TEXT IN SHELL SCRIPTS

To make this a little more obscure, the key.txt �le should exist somewhere that normal users

cannot access, but still readable by root.

For example, /var/root/key.txt with read-only permission for root. Any script that needs to de-

obfuscate sensitive information therefore needs to be run as root, or have a suid set.

Additionally, any script that uses this technique should be kept seperate from the key �le, and

when used in any shell script, make sure any variable containing the de-obfuscated text is used

only where required, and unset/destroyed after use.

I typically only use this in single use scripts – for example, creating a local user account when a

machine is imaged/deployed.

13 APRIL 2017

CATEGORIES: MAC OS

TAGS: CLI, CLI TOOLS, COMMAND LINE TOOLS, MAC OS X, XCODE

Installing the Xcode command line tools is generally a pretty easy a�air, with either a visit to the

Apple Developer portal to download the single DMG �le, or using the xcode-select --install

command.

But.

Both of these methods require interacting with the GUI, and frankly, I’d rather not have dialog

boxes pop up when I’ve got an automated process to con�gure my machine, or have to log into

the Developer portal just to download the DMG. So while trolling through the macOS Software

Update catalog for Sierra, I stumbled on three packages that appeared to contain all the CLI tools.

XCODE COMMAND LINE TOOLS

A quick capture of HTTP events in a Squid log revealed these three packages are the same as

those downloaded when the xcode-select --install command is run.

So, here is xcode_tools.py. It’s really basic. Like, really, really basic. It just downloads the tools to

your ~/Desktop folder. Done. Nothing else to do except install at your leisure.

I can’t make any guarantee that this will work forever, and I’ll have to wait for the next Xcode

release to see what happens with the software update catalog, but at least for the time being,

you can download the Xcode 8.3 CLI tools without those annoying GUI pop ups.

27 FEBRUARY 2017

CATEGORIES: MAC OS

TAGS: APPLELOOPS, GARAGEBAND, LOGIC_PRO_X, MAINSTAGE

Apple have a great EDU deal going for their ‘Pro Apps’, consisting of Final Cut Pro X, Logic Pro X,

Motion 5, Compressor 4, and MainStage 3, all up, this deal in dollarydoos is $299.99. That’s a nice

saving of $727 (and any unused redemption codes can be converted to codes for managed

devices for use in VPP).

But, that’s not the point of this post…

I recently re-wrote the get_audio_content.py script that downloaded the loop packages that

GarageBand and Logic Pro X come with, the new tool is now called appleLoops and has moved.

The new tool will now download loop packages for GarageBand, LogicPro X, and MainStage 3.

More information can be found in the README.

Some observations about these loops based on my experiences:

GarageBand, Logic Pro X, and MainStage all have a plist �le contained within the app that

lists all the packages required for that particular release.

There is no speci�c order that the loop/content packages need to be installed in.

This same �le is also hosted on Apple servers, and is fetched by each app.

After upgrading from one version to another, where loop packages have changed, the

apps will only download those that are required for the newest version.

Loop packages don’t change with each release, so there are some app updates that won’t

have new loop contents, in that instance, deploy the latest content that you have. For

example, content in GarageBand versions 10.1.2 to 10.1.4 didn’t change until Apple released

GarageBand 10.1.5.

There are a lot of loop packages that are common to all three apps; this content is Caching

Server aware, and will be cached if you have a Caching Server on your network.

Additional content in GarageBand, Logic Pro X, and MainStage is now a free “in app

purchase”; although this purchase is not handled via in app purchase mechanisms, it’s just

a straight up download. You are prompted on �rst use to download the additional content

after downloading and installing the essential content packages.

Loops are indexed as required. You can copy ~/Music/Audio\ Music\

Apps/Databases/LoopsDatabaseV09.db from an existing install to skip this step. Loops are re-

indexed when they are updated. Thanks to neilmartin83 in the macadmins Slack for

pointing this out.

You can disable the ‘Whats new in Logic Pro X’ on a fresh install by running

touch ~/Library/Preferences/com.apple.logic10.plist

GARAGEBAND, LOGIC PRO X, MAINSTAGE 3, OH MY!

The GarageBand welcome screen can be disabled by running

defaults write ~/Library/Containers/com.apple.garageband10/Data/Library/Preferences
com.apple.garageband10 welcomeScreenShown -bool true

The GarageBand prompt to download additional optional content can disabled by running

defaults write ~/Library/Containers/com.apple.garageband10/Data/Library/Preferences
com.apple.garageband10 ShowMoreDownloadsDialogGB -bool false

Deploying these loops can be a pain in the neck, so to make it a bit easier, the appleLoops tool

will download content and store it in a fairly straight forward set of folders; it will also attempt to

reduce the amount of data downloaded by copying a �le from another folder within the speci�ed

download directory if it already exists. The tool will also skip over already downloaded content

and resume from the last partial �le downloaded.

An example of the folder structure is as below.

:loops # ls -lha
drwxr-xr-x 4 foo staff 136B 16 Feb 19:39 logicpro1030
:loops # ls -lha logicpro1030/
drwxr-xr-x 3 foo staff 102B 16 Feb 19:39 2013
drwxr-xr-x 4 foo staff 136B 16 Feb 19:35 2016
:loops # ls -lha logicpro1030/2016/
drwxr-xr-x 31 foo staff 1.0K 16 Feb 19:29 mandatory
drwxr-xr-x 544 foo staff 18K 16 Feb 21:37 optional
:loops # ls -lha logicpro1030/2016/optional/
-rw-r--r-- 1 foo staff 20M 16 Feb 20:03 MAContent10_AssetPack_0002_AlchemyOrgans.p
kg
-rw-r--r-- 1 foo staff 99M 16 Feb 19:54 MAContent10_AssetPack_0003_AlchemyBrass.pk
g
...
-rw-r--r-- 1 foo staff 912K 16 Feb 21:02 MAContent10_AssetPack_0625_AlchemySettings
TexturesNEffects.pkg
-rw-r--r-- 1 foo staff 908K 16 Feb 19:46 MAContent10_AssetPack_0626_AlchemySettings
VintageSynth.pkg

If you’re a munki user, the easiest way to import these into munki is with a for loop in a shell

script that does this for you. A simple example to import loops for Logic Pro X is below. In this

instance, you’d need to run it in all the folders that the loops are found in.

#!/bin/sh
Bulk import loop/content packages into munki. Modify to suit your munki setup, etc.

pkg_category="Audio" # Category you want to have the loops available in.
pkg_developer="Apple" # Developer of the loops.
import_path="logic_pro" # Folder within the munki repo pkgs folder you want these to go i

n. I use seperate folders as this helps me keep the loops manageable, even if disk space
is used up.
update_for="LogicProX" # The munki pkginfo name the loop package is for.
requires="LogicProX" # This ensures that the app is installed before the loop package is
installed.

Note, the --update_for="foo" flag must be used multiple times if you need to specify th
e package as an update for more than one application. In this instance, I suggest manuall
y specifying the apps rather than using the variable update_for

for i in *.pkg; do
 /usr/local/munki/munkiimport ${i} --nointeractive --unattended_install --category
="${pkg_category}" --displayname=$(basename -s .pkg ${i}) --developer="${pkg_developer}"
--subdirectory="${import_path}" -c "testing" --update_for="${update_for}" --requires="${r
equires}"
done

Another thing I do as part of managing these loops in munki, is to make a manifest that contains

all the loops for a given application, as a managed install, so that if I ever needed to use it, the

manifest is available. So far I haven’t needed it, as setting the package as an update for a given

application has worked for me.

Keeping these packages managed in a mixed version environment can get tricky when there are

loop/content changes, so try and keep your clients on the same app version; if you do have to

upgrade, try and upgrade all the clients simultaneously.

One of the great resources any Mac admin should have in their arsenal is the Mac Admin’s Slack –

if you haven’t already, sign up (it’s free!) and check out #garageband or #logicpro – they’re quiet,

but any questions can be asked in there. If you’re an Aussie or Kiwi Mac admin, join the #anzmac

channel for shenanigans.

28 NOVEMBER 2016

CATEGORIES: MAC OS

TAGS: ACTIVDRIVER, MACOS, PROMETHEAN, SIERRA

If you’re installing the Promethean Activ Driver “app” on Mac OS El Capitan and macOS Sierra, as

well as running into issues with the software not launching or not detecting connected interactive

whiteboards, the issue appears directly related to bad permissions set by the installer application.

There is a community support thread that has a �x, however, I’ve slightly tweaked the �x on the

basis that root ownership should have rwx , while group and others can have r-x .

I’m also nervous when LaunchAgents and LaunchDaemons installed by apps/packages get

execute permissions – they’re entirely not needed; macOS only requires read permissions, so I

also change permissions for the Promethean LaunchAgents.

To �x, you can simply add a postinstall script to a package, or if you use munki, simply add this

as a post-install script in the pkgsinfo �le for the imported package.

#!/bin/sh
/bin/chmod -R 755 /usr/local/share/promethean
/bin/chmod -R 644 /Library/LaunchAgents/com.promethean.*
/bin/chmod -R 755 /usr/local/lib

The current driver version (5.14.21) appears to work correctly in macOS Sierra, even

though Promethean indicates the driver set is only compatible for Mac OS X 10.8 to 10.11 – use

these drivers in Sierra at your own discretion/judgement.

On the subject of Promethean software, I also suggest you hit their support team up and ask

them to return to using the standardised Apple pkg format rather than the awful app based

installer they’ve switched to.

PROMETHEAN ACTIV DRIVERS

19 OCTOBER 2016

CATEGORIES: MAC OS

TAGS: MACOS, TOURISTD

New to Mac noti�cation

This noti�cation bugs me, but only because I don’t particular care for operating systems taking

me on a tour of all the “magical” features that I end up ignoring, and also because it’s one more

thing I have to dismiss after setting up a fresh macOS install or upgrade.

I don’t have OCD (and I feel for those that su�er from it), but I am particular about setting up my

macOS installs. So I went down a little alleyway to see if there was some way to never be

bothered with the noti�cation again.

There is a preference �le that gets created/modi�ed after dismissing or activating the noti�cation

– ~/Library/Preferences/com.apple.touristd.plist .

Lets do a quick look at what is in the �le:

:~ # defaults read com.apple.touristd
{
 "seed-https://help.apple.com/osx/mac/10.12/whats-new" = "2016-10-19 11:04:39 +0000";
}

A quick defaults read-type on that key indicates it’s a date value (which is obvious enough from

the output, but matters when it comes to applying the preference with defaults write).

Sure enough, deleting this �le and logging back in causes the noti�cation to appear again. If you

want to make sure that the noti�cation isn’t presented to the user, you can create the preference

with the correct* key in it.

defaults write com.apple.touristd seed-https://help.apple.com/osx/mac/10.12/whats-new -da
te "$(date)"

*This may be di�erent based on your machine type & whether the OS is upgraded or a fresh

install.

COM.APPLE.TOURISTD

Looking for the binary that is checking and issuing the noti�cation, we get the following results

(truncated output is shown):

 # find . -type f -iname "tourist*"
...
./System/Library/PrivateFrameworks/Tourist.framework/Versions/A/Resources/touristd

A cursory glance at strings contained in the binary indicates it can be used at the command

line.

:Resources # ./touristd --help
Usage: touristd
Options:
 --help Show this help and exit
 --board-id=ID Override detected board ID
 --scaling-factor=NUM Override detected scaling factor (main screen)
 --previous-system=VERSION Override detected previous system version
 --locale=CODE Override detected locale setting
 --tours=FILE Path to an alternate list of tour definitions (.plist)
 --menu=NUM (menu mode) trigger menu select action for item NUM
 --hours Show hours elapsed since last OS install
 --reset Clear setting of wheher notification was shown for all tou
rs
Commands:
 With no command argument, touristd will run as a daemon.
 profile Show profile
 status Show all known tours
 match Show ranked list of profile matches against known tours
 notify Show notification for matched tour
 activate Directly trigger 'action' of notification
 dismiss Directly trigger 'cancel' of notification
 menu Show exported Finder menu items

It appears that there are a number of di�erent “tours” that can be sent to the user as a noti�cation,

based on hardware types, and whether the OS is a fresh install or upgrade. It is also possible to

dismiss or notify the user (although if the user has already dismissed or activated the tour, it won’t

appear again unless the --reset �ag is called �rst).

You can determine which tours the system matches against by using the match �ag;

the activate �ag is used to launch the �rst “activate” tour; in my testing this launched the “What’s

new” tour in Safari.

macOS Sierra What’s New tour in Safari

Based on further testing, it is not currently possible to use the touristd binary to launch other

tours (such as the “New to Mac”, or a tour speci�c to the Mac hardware), nor can you just modify

the preference domain to force the activate �ag to launch a di�erent tour, but you can launch

speci�c tours through Safari by using open -a Safari – for example, to launch the tour relating

to the 27″ iMac, you would use open -a Safari https://help.apple.com/osx/mac/10.12/imac-27

This is some pretty handy stu�, especially if you’re in an environment where you may want to

have the user automatically get a tour of new features in macOS, or their Mac device.

As for me, I’m happy that I can �nally automate dismissing the noti�cation

10 OCTOBER 2016

CATEGORIES: MAC OS

TAGS: CACHING SERVER, KRYPTED, MAC OS X, MACOS, PRECACHE

Caching Server

I often �nd myself in a spot where I’m always re-downloading and re-caching iOS IPSW �les

because they’re infrequently being downloaded from Apple. This is pretty frustrating when it

comes time to downloading macOS installers, iWork/iLife apps, or IPSW’s for the infrequent

restoring of an iOS device in Apple Con�gurator. This is a feature sorely lacking in Apple’s macOS

Caching Server; so until that feature is implemented, we make do…

Charles from krypted.com has a great post about how to pull cacheable assets through the

Caching Server, so using this method, we can �gure out where those Mac App Store apps are

coming from, and pre cache those!

Lets take a look at the Caching Server logs found at /Library/Server/Caching/Logs/ – speci�cally

Service.log

2016-10-10 10:14:45.829 #/lsyeQGL0tvE Received GET request by "MacAppStore/2.2" for /appl
e-assets-us-std-000001/Purple62/v4/ed/3d/8e/ed3d8e87-09da-2272-fc3a-b1678d8067a0/iyp57436
66419479406275.pkg
2016-10-10 10:15:45.627 #E3oGY2esLpZE Received GET request by "itunesstored/1.0" for /app
le-assets-us-std-000001/Purple20/v4/57/44/6b/57446bcb-a3b7-46ae-3307-788a3b5ef280/pre-thi
nned2492386531421197760.thinned.signed.dpkg.ipa
2016-10-10 10:15:50.174 #E3oGY2esLpZE Served all 2.9 MB of 2.9 MB; 0 bytes from cache, 2.
9 MB stored from Internet, 0 bytes from peers
2016-10-10 10:17:35.870 #ziqCwn3ZEdaC Received GET request by "itunesstored/1.0" for /iOS
7.1/031-0753.20140310.D1cKf/com_apple_MobileAsset_DictionaryServices_dictionary2/274d8f95
7d6bd64df440645d851c0dbd4deea358.zip

PRE CACHING MACOS SOFTWARE

2016-10-10 10:17:42.328 #ziqCwn3ZEdaC Served all 28.0 MB of 28.0 MB; 28.0 MB from cache,
0 bytes stored from Internet, 0 bytes from peers

In the example above, we see that the Caching server has received a GET request from a Mac

App Store client, and there is a package �le being requested; the URL however is incomplete.

Looking at active requests on our proxy server at the time the request went through, the

complete requested URL is found:

by kid3 {
...
uri http://osxapps.itunes.apple.com/apple-assets-us-std-000001/Purple62/v4/ed/3d/8e/ed3d8
e87-09da-2272-fc3a-b1678d8067a0/iyp5743666419479406275.pkg
...
}

Bingo!

Now we can pull Mac App Store apps through the Caching Server, all we need to do is watch the

Caching Server Service.log �le for any requests for items that aren’t cached. The package URL’s

are not human readable, so basically this involves watching the logs with something like tail -f

/Library/Server/Caching/Logs/Service.log or watching the Caching Server service log in the

Server app.

Here’s some URL’s I’ve grabbed so far (these have all been downloaded on macOS Sierra 10.12.0*

and are “correct” as at 2016-10-10) – you can use curl or wget to grab these through your

Caching Server:
*The iWork apps are macOS Sierra speci�c.

Pages 6.0
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple62/v4/8a/ee/6e/8aee6e8b-
e8cb-2434-b050-31dbbcc01974/daf974703926683564923.pkg?source=osxapps.itunes.apple.com

Keynote 7.0
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple71/v4/a6/96/42/a696423f-
181c-fc2b-b572-3d3697146d47/hlz1727390940373748952.pkg?source=osxapps.itunes.apple.com

Numbers 4.0
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple71/v4/69/02/32/69023287-
bd7a-ef14-0424-234d8fc589e4/mto6541029270492763328.pkg?source=osxapps.itunes.apple.com

GarageBand 10.1.2
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple30/v4/19/78/8b/19788bde-
3172-3b98-8300-b8c4a9458bae/iat2506504784673372233.pkg?source=osxapps.itunes.apple.com

iMovie 10.1.2
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple20/v4/80/6d/9b/806d9b4e-

776c-baae-574c-ed8afbc70acb/gyj6237528809531298180.pkg?source=osxapps.itunes.apple.com

Xcode 8.0
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple62/v4/ed/3d/8e/ed3d8e87-
09da-2272-fc3a-b1678d8067a0/iyp5743666419479406275.pkg?source=osxapps.itunes.apple.com

macOS Server 5.2
http://cache_server_url:PORTNUM/apple-assets-us-std-000001/Purple62/v4/44/71/01/44710118-
b2c9-1e31-73f6-fa7a0a26e594/wjs7031774084062486733.pkg?source=osxapps.itunes.apple.com

Substitute the cache_server_url for your Caching Server address, and the PORTNUM for the

Caching Server port number, which can be found by running sudo serveradmin fullstatus

caching . This process can be done for any of the Mac App Store apps, however there are a

couple of small gotcha’s:

iOS 9 introduced App Thinning, this makes it di�cult to pre cache iOS apps, as there are

now many di�erent downloadable assets for the one app.

These URL’s may change any time there is an app update.

Downloaded packages are not installable from the GUI or the CLI as they are encrypted.

You can grab Charles’ precache.py from here. This utility will pre cache iOS, watchOS, and tvOS

Over the Air (OTA) updates, as well as the IPSW �les for the same OS’s, it will also pre cache

macOS installers for Mountain Lion through to current macOS Sierra release.

There is also the CacheWarmer utility available.

** Note **

So, for all those thinking to themselves, “Hey Carl, that’s cool, but why don’t I just download them

from the Mac App Store when they come out?”

Well, that’s an entirely reasonable approach to take, until you’re in a situation where you need to

make sure these apps stay in your Caching Server. By creating a script to download these apps,

you can guarantee that they’ll be there when you need them. It also makes it pretty handy to get

a Caching Server ready again after having to reset the cache after an asset becomes corrupted

(which does happen), or in instances where Caching Server decides to clear the cache when it

can’t contact Apple for registration.

1 JUNE 2016

CATEGORIES: MAC OS

TAGS: GARAGEBAND, LOOPS, MAC OS X, PACKAGING

Deploying GarageBand audio content

On the 16th of May, Apple released an updated version of GarageBand, and shortly after, updated

the “core content” that is downloaded the �rst time GarageBand is launched.

If you run a managed Mac environment, such as classrooms/labs, you usually want to avoid end

users going through the process of downloading this content, typically you build packages using

a tool like Iceberg, or by using tools like AutoPKG and then deploy them to the Mac/s. In this post,

I’ll walk through how I’ve packaged the “core audio content” for deployment.

First, you’ll need to get the loops. There are many di�erent ways to get this content, such as using

Charles Proxy, or you can use a nifty command line tool such as the one I created, available here.

Previous versions of GarageBand 10 required content from the 2013 and 2015 “release” years.

GarageBand 10.1.2 doesn’t; it only requires the content released in 2016. All testing has been done

with Mac OS X 10.11.4, 10.11.5, and fresh installs of GarageBand 10.1.2.

GARAGEBAND AUDIO

To grab the 2016 content, I run :

./get_audio_content.py -y 2016 -p garageband -o ~/Desktop/loops/

This grabs the content for GarageBand, and saves it within the loops folder on my desktop. At

time of writing, there are 91 packages to download, totalling approximately 9.2GB, so if you’ve got

a slow Internet connection, you might want to do this overnight.

Once the content is downloaded, you can then use your favourite packaging tool to bundle the

packages for deployment. This may be munki, Casper, or other similar deployment tool.

** Update June 2, 2016 **

It appears that in some circumstances, if you package the loops by wrapping them in any type of

package, and use a postinstall script, some or all packages do not install properly.

/var/log/install.log indicates this with the following error:

Jun 2 10:19:45 mithrandir installer: PackageKit: Install Failed: (null) (null)

These packages install correctly when a simple for loop is called directly from the command

line.

I’ve fallen back to the snapshot method, using logGen to take a pre install and post install

snapshot of the OS, and then used pkgGen to gather all the �les that it �nds have been added or

changed; then building a package that drops those �les directly in place, with the correct

permissions.

You can see in the screenshot below an example of building the package – this includes all the

2013-2016 content.

GarageBand 10.x content package build

Test the package on a virtual machine, or other test setup, to verify the install process works

correctly. Any errors from the install run are found in /var/log/install.log .

When the package has passed deployment tests, move the package into your deployment

work�ows, and you’re ready to rock on; GarageBand won’t prompt to download the content, and

the loops will be indexed the �rst time the app is launched, this index is created per user and will

re-index anytime new loops are added to GarageBand.

GarageBand 10.1.2 with 2016 audio content installed

** Update September 2, 2016**

Morgs from #anzmac in the macadmins Slack group has recently pointed me towards this

excellent post by Alan Siu; it covers how to import these packages into munki without having to

create a single installer as I’ve outlined here. I’m in the process of moving the deployment system

in my workplace to munki, so I’ll be sure to use this process in my deployment, rather than

building a single monolithic package.

Incidentally, if you haven’t already, I highly recommend joining the 6600+ strong macadmin

community on Slack. You’ll �nd plenty of help from fellow Mac admin’s around the world, as well

as make new friends!

I also recommend subscribing to the macadmins podcast.

